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Abstract: - The paper is addressed to increasing the accuracy of discrete-time computation of linear rheological 

and viscoelastic material functions belonging to the class of smooth non-bandlimited (NBL) signals. It is 

demonstrated that the ideology of classical discrete-time processing, which is based on preserving accurate 

spectrum over the Nyquist frequency band, ignores the anti-aliasing distortion caused by removal of a signal 

portion above the Nyquist frequency needed for preserving accurate spectrum and, so, gives the inadequate 

accuracy evaluation of computed material functions. To ensure the adequate accuracy evaluation of NBL material 

functions, we propose to waive the criterion of preserving accurate spectrum over the Nyquist frequency band, 

but instead to use the criterion of maintaining accurate shape of a material function in the time-domain. Both the 

criteria are compared and the appropriate error models are developed and investigated. Increase of accuracy of 

filtering algorithms is studied for computing NBL material functions. Design of discrete-time filters is proposed 

by the identification method with employing bandlimited input and output portions of a pair of NBL functions. 

The proposed design approach is validated by constructing a discrete-time differentiator with employing 

bandlimited portions of the Cauchy pulse and its derivative.  
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1 Introduction 
Material characterization [1,2], by which 

a material's structure and properties are evaluated, 

includes also various transformations of 

experimental data. A typical example of 

experimental data transformation is the 

interconversion between various rheological and 

viscoelastic material functions [3] needed for 

evaluation of material properties over long time 

intervals and wide frequency ranges [4-7], when the 

possibilities of direct experimentation are limited.  

The exact mathematical description of 

interrelations between various rheological and 

viscoelastic material functions are known from the 

linear theory of viscoelasticity [4-7]. The typical 

experimental data transformations, which are carried 

out by discrete-time (DT) interconversion [3], 

include the interconversions between the static and 

dynamic material functions, and vice versa, the 

interconversions between the real and imaginary 

parts of dynamic material functions, the recovery of 

the relaxation and retardation spectra from various 

static or dynamic material functions, etc. 

Historically, a great number of various methods 

[8-12] have been derived for computing the 

rheological and viscoelastic material functions. 

Nowadays, DT methods are increasingly involved in 

computing material functions [3]. However, the 

computation of the rheological and viscoelastic 

material functions has received little attention in the 

literature from the standpoint of DT processing 

[13-15]. In routine practice, the rheological and 

viscoelastic material functions are often computed by 

the traditional DT processing focused on processing 

bandlimited (BL) signals. 

There are several aspects of DT processing that 

are not sufficiently investigated yet and could 

negatively impact on computation performance of the 

rheological and viscoelastic material functions, such 

as: 

 the specific monotonic and locally monotonic 

character and the Fourier/Mellin transforms with 
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unbounded supports [3] that allow to categorise 

the rheological and viscoelastic material 

functions as smooth non-bandlimited (NBL) 

signals; 

 the bandlimited processing ideology and 

accuracy criteria used in the classical DT 

processing [13] that could be inappropriate for 

computing NBL material functions; 

 DT algorithms that are designed without 

considering the features of NBL material 

functions. 

The goal of this study was to investigate how to 

increase computing accuracy of the linear rheological 

and viscoelastic material functions to take into 

account the above aspects and to minimise their 

potential detrimental effects. 

The paper is structured as follows. In next Section, 

the differences between the classical discrete-time 

processing of continuous-time (CT) signals and 

discrete-time processing of NBL material functions 

are disclosed. Section 3 is devoted to modification of 

DT processing to ensure the adequate accuracy 

evaluation for computed material functions. Filtering 

algorithms for computing material functions are 

considered in Section 4. In Section 5, a design 

method of DT filters is proposed based on using 

bandlimited portions of input and output signals. 

Here, the evaluation results are provided for a 

designed DT differentiator.  Finally, conclusions are 

given in Section 7. 

 

 

2 Discrete-Time Processing of NBL 

Material Functions 
 

 

2.1 Classical DT Processing of CT Signals 
Main features of the classical DT processing of CT 

signals [13] are as follows: (i) the processing is 

focused on BL signals or signals that can be forced to 

be bandlimited; (ii) it carries out the processing that 

is equivalent to CT one, to achieve this the processing 

works with CT input and output signals and only their 

transformation is implemented discretely; (iii) the 

theoretical foundation of the classical DT processing 

is the Nyquist theorem [13], according to that a BL 

processing ideology is realised based on preserving 

the accurate spectra of signals over the Nyquist 

frequency band. 

A simplified block diagramm of the classical DT 

processing of CT signals is shown in Fig. 1. A CT 

input signal is sampled (converted from CT to DT in 

C/D block) at appropriate sampling frequency (here, 

angular) S = 2 / T, where T is sampling period. In 

order to keep all information about the input signal, 

the sampling frequency should be at least two times 

greater than the higher frequency of the original CT 

signal. When it is not possible to guarantee this 

condition, so-called aliasing distortions arise 

resulting that the reconstructed signal from samples 

differs from the original CT signal. To avoid aliasing 

distortions [13], the spectrum of input signal is 

limited to the so-called the Nyquist frequency 

Ny = S / 2 by removing frequencies above the 

Nyquist frequency by analog low-pass anti-aliasing 

filtering (AAF) at cut-off frequency 

C = Ny prior sampling. The sampled signal is 

processed by a DT algorithm and finally is converted 

back to CT (D/C) output signal.  

 

 

Fig. 1. A block diagram for the classical DT 

processing of CT signals. 

 

2.2 Features of DT Processing of NBL 

 Material Functions 
Two noticeable differences between the classical DT 

processing [3] and the DT processing of NBL 

material functions are follows:  

(i) as outlined in the Introduction, the rheological 

and viscoelastic material functions belong to the 

class of smooth non-bandlimited signals 

[3,16,17].  

(ii) NBL material functions are numerically 

processed, as a rule, with no conversion of DT 

result back to the CT domain [3]. For computing 

NBL material functions, the block diagram 

(Fig. 1) is used without D/C block. 

 

 

2.3 Characteristic Time-Domain Portions of 

 a NBL Material Function 
The non-bandlimitedness, i.e. the Fourier/Mellin 

transforms with unbounded supports, allows to 

represent the spectrum of a NBL material function as 

one consisting from several frequency bands (Fig. 2) 

with the corresponding signal portions in the time 

domain that are discretely processed in different way. 

Therefore,  the Nyquist frequency Ny divides the 

infinite spectrum of a NBL material function into a 

Nyquist frequency band [–NY, Ny] and a band 
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above the Nyquist frequency || > Ny with the 

corresponding bandlimited portion (BLP) and out-of-

band portion (OBP) in the time domain 

( ) ( ) ( )BLP OBPx t x t x t  .    (1) 

 

 

Fig. 2. Decomposition of a NBL material function 

into characteristic portions. 

In its turn, cut-off frequency C conditionally 

splits the band above the Nyquist frequency into an 

aliasing band (Ny, C] and an anti-aliasing band 

(C, ) with the characteristic aliasing and anti-

aliasing portions in the time domain 

( ) ( ) ( )OBP A AAx t x t x t  .     (2) 

 As it is well known [13-15], only bandlimited 

portion xBLP(t) is processed in a direct way by the DT 

algorithm used, whereas aliasing portion xA(t) is 

processed as a signal transformed back to the Nyquist 

frequency band, but anti-aliasing portion xAA(t) is 

removed by AAF. So, according to (2), OBP 

determines the common effect from the non-

bandlimitedness that manifests in the form of aliasing 

arrising from processing of aliasing portion xA(t), and 

in the form of anti-aliasing arrising from removing 

anti-aliasing portion xAA(t).   

For simplicity, in this study, we consider only the 

cases with the maximum aliasing/zero anti-aliasing 

portions and the maximum anti-aliasing/zero aliasing 

portions corresponding to two idealized extreme 

processing alternatives: 

(i) a full-band processing without AAF (C = ), 

when complete OBP is processed as a signal 

generated back the Nyquist frequency band; and  

(ii) a processing mode with ideal AAF with cut-off 

at the Nyquist frequency (C = Ny), when OBP 

is completely removed. 

2.4 A Drawback of Classical DT Processing 

 for NBL Material Functions 
According to the classical DT processing ideology, it 

is common to assume [14] that (i) a signal portion 

with spectrum above the Nyquist frequency is 

unwanted so should be removed by AAF, and (ii) the 

error from AAF is smaller than that caused by 

aliasing. These assumptions are no longer valid for 

NBL material functions. Making a NBL material 

function to be bandlimited is achieved by removal of 

OBP, which can in no way be considered as 

unwanted because is a natural component of a NBL 

material function being essential for its adequate 

representation and evaluation. As shown in [16,17], 

a question about whose of aliasing or anti-aliasing 

error will be higher, depends on how OBP, 

transformed back to the Nyquist frequency band, will 

be processed by the DT algorithm used. 

So, the main drawback of the classical DT 

processing for computing NBL material functions is 

inadequate accuracy evaluation due to ignoring an 

the essential component – OBP and its caused anti-

aliasing distortion. 

 

 

3 Modification of DT Processing for 

 NBL Material Functions 

 
 

3.1 Accuracy Criteria 
To overcome the above drawback, we propose to 

waive the frequency-domain accuracy criterion of 

classical DT processing [13] based on preserving 

accurate spectrum over the Nyquist frequency band, 

but instead to use the the time-domain accuracy 

criterion of maintaining accurate shape of a material 

function in the time-domain. 

The proposal seems to contradict previous studies 

[13] that emphasize the negative effect of the aliased 

spectra, but the use the time-domain accuracy 

criterion is justified by the fact that material functions 

are discretely processed with no conversion of DT 

results back to the CT domain (see the second 

difference in Sub-Section 2.2). If D/C conversion is 

not caried out, there is no longer the incontrovertible 

argument for preserving the accurate spectrum of the 

output signal over the Nyquist frequency band, and 

other criteria may be used, for example, computation 

of the samples as accurately as possible against a 

reference output signal. In fact, the proposal is not 

original, historically, the time-domain accuracy 

criteria based on theoretical models have long time 

been used in processing material functions [3]. 
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Both the accuracy criteria are illustrated in Fig. 3 

in example of comparison of CT and DT (sampled) 

vaveforms and spectra for a NBL test signal so-called  

Cauchy pulse [16,17] 

2( ) 1/ (1 )c t t       (3) 

having spectrum 

( ) exp( | |)C       

and the following BLP  

( ) ( )[1 exp( )( sin cos )]BLP Ny Ny Nyc t c t t t t      (4)  

It can be seen, that theoretically both the time-

domain and frequency-domain accuracy criteria can 

be used, but it is impossible to attain 

simultaneously accurate shape and spectrum for 

a sampled NBL function. If accurate time 

domain waveform c(t) is kept, it has aliased 

spectrum CS(), if exact spectrum CS,BLP() is 

preserved over the Nyquist frequency band, the 

reconstructed waveform cBLP(t) is distorted by the 

anti-aliasing distortion. 
 

 

Fig. 3. The Cauchy pulse and its BLP (a) with and 

the spectra of CT (coloured) and sampled signals 

(lines) (b) at NY = 2.5. 

3.2 Error Models 
In this Sub-Section, the error models will be 

developed and compared for both the frequncy-

domain and time-domain accuracy criteria 

considered in the previous Sub-Section. 

Assume that NBL material function (1) has to be 

discretely transformed into other otput NBL material 

function  

( ) ( ) ( )BLP OBPy t y t y t       (5) 

to compute an estimate for (5). The estimate in the 

full-band processing mode will be composed from 

both the estimates of BLP and OBP 

ˆ ˆ ˆ( ) ( ) ( )full BLP OBPy t y t y t  ,  

whereas, in the proccesing mode with ideal AAF with 

cut-off at the Nyquist frequency, it will consist of 

single BLP estimate   

ˆ ˆ( ) ( )AAF BLPy t y t ,  

since OBP of input signal xOBP(t) is completely 

removed by ideal AAF resulting in ˆ ( ) 0OBPy t  .  

The total time-domain error of the computed 

output material function ˆ( )y t  is calculated as a 

difference between the computed function and the 

appropriate reference function 

ˆ( ) ( ) ( )refe t y t y t  .  (6) 

 

 
3.2.1 Error Model for Frequency-Domain 

 Accuracy Criterion  

The frequency-domain accuracy criterion used in the 

classical DT processing [13] is based on preserving 

accurate spectrum over the Nyquist frequency band, 

which is equivalent to the following reference 

function in the time domain 

_ ( ) ( )FD ref BLPy t y t .  (7) 

Eq. (7) allows to interpret the frequency-domain 

accuracy criterion also as a BL one. In the full-band 

processing mode, reference function (7), according to 

(6), gives the following expression for the total error 

_
ˆ ˆ( ) ( ) ( ) ( )

ˆ( ) ( )

FD full BLP OBP BLP

BLP OBP

e t y t y t y t

e t y t

  

 
,  (8) 

where the first term of Eq. (8)  

ˆ( ) ( ) ( )BLP BLP BLPe t y t y t    (9) 
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represents BLP error, but the computed OBP of 

output material function ˆ ( )OBPy t  is interpreted as a 

maximum aliasing error,  

_ max
ˆ( ) ( )FD A OBPe t y t . 

Similarly, in the processing mode with ideal AAF, 

the total error is equal to 

_ ( ) ( )FD AAF BLPe t e t .  (10) 

Eq. (10) gives the total error that is equal to BLP error 

(9) meaning that removing OBP does not affect the 

total error, which is not in accordance with the 

physical considerations and, so, is not applicable to 

NBL material functions. 

 

 

3.2.2 Error Model for Time-Domain Accuracy 

 Criterion 
The proposed time-domain accuracy criterion is 

equivalent to NBL reference function   

_ ( ) ( )TD refy t y t ,  (11) 

which allows to interpret the time-domain accuracy 

criterion as a non-bandlimited one. Reference 

function (11) according to (6) gives the following 

total error 

_

_ max

ˆ ˆ( ) ( ) ( ) ( ) ( )

( ) ( )

( ) ( )

TD full BLP OBP BLP OBP

BLP OBP

BLP TD A

e t y t y t y t y t

e t e t

e t e t

   

 

 

   (12) 

in the full-band processing mode, and  

_

_ max

ˆ( ) ( ) ( ) ( )

( ) ( )

( ) ( )

TD AAF BLP BLP OBP

BLP OBP

BLP TD AA

e t y t y t y t

e t y t

e t e t

  

 

 

, (13) 

in the processing mode with ideal AAF. Errors (12) 

and (13) show that, in processing NBL signals, i.e. in 

computing NBL material functions, there always is a 

non-bandlimited error, which is limited by the 

maximum aliasing error equal to the error of 

computed OBP 

_ max
ˆ( ) ( ) ( ) ( )TD A OBP OBP OBPe t e t y t y t   ,  (14) 

and the maximum anti-aliasing error equal to OBP of 

exact output signal with minus sign 

_ max ( ) ( )TD AA OBPe t y t  .  (15) 

 

3.2.3 Comparison of Errors Models 
In Fig. 4, variation of mean square errors (MSEs) 

with sampling frequency is compared for both the 

frequency-domain and time-domain accuracy criteria 

in differentiting of the Cauchy pulse (2) by a 12-point 

differentiator designed by the impulse response 

truncation (IRT) method [15]. The differentiation 

MSE is evaluated as 

  2

1

1/ ( )
M

m

m

MSE M e t


  , (16) 

calculated over the predetermined time interval [0, 10] 

for M = 100 samples for the appropriate time-domain 

error. 

 

 

Fig. 4. Variation of differentiation MSEs with 

sampling frequency for the Cauchy pulse. Coloured 

area in (a): variation limits of the total MSE for the 

frequency-domain criterion; coloured area in (b): 

variation limits of the total MSE for the proposed 

time-domain criterion. 

Total errors for both the accuracy criteria 

converge to BLP error at high sampling frequencies, 

however, the errors for both the accuracy criteria 

differ significantly at low frequencies, particularly, 

their lower limits. It can be seen that the frequency-

domain criterion preserving accurate spectrum over 

the Nyquist frequency band ignores the anti-aliasing 

distortion caused by removal of OBP, which reflects 

as a wrong – zero estimate for the non-
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bandlimitedness error in the processing mode with 

ideal AAF.  

 

 

4 Filtering Algorithms for Computing 

 Material Functions 

Interrelations between the different rheological and 

viscoelastic material functions are often given in the 

form of convolution transforms [3]. Since ideal filters 

are also described by convolution transforms, DT and 

digital filters are widely used for their computing.  

A large amount of examples can be found in 

literature, where discrete-time (digital) filters have 

been constructed for computing convolution 

transforms with the aim to make the computation 

more effective. The two major areas, where DT filters 

have been most used for computing integral 

transforms probably are geophysical electromagnetic 

prospecting [18-20] and material science [3]. In 

modern signal processing [13-15,21], a DT 

differentiator [22] inverting a convolution transform 

with the step-function kernel, likely, is the most 

known filter for computing a convolution transform.  

In computing convolution transforms, the shapes 

of convolved waveforms usually carry information, 

so attainment of accurate as possible waveforms 

generally is of primary importance. So, design 

problem of a filter for computing a convolution 

transform should be formulated in the time domain as 

finding an impulse response that produces convolved 

waveforms as accurately as possible under the 

specific processing conditions (filter’s length, 

sampling frequency, etc.). This design differs from 

that of conventional frequency selective filters 

[13-15,21] intended for removing unwanted 

frequency parts or extracting useful parts of a signal, 

where filter coefficients must be found to provide 

some desired frequency response.  

Filters designed in the frequency domain usually 

are not optimal for computing convolution 

transforms, in the sense that they do not produce 

maximum accurate convolved waveforms potentially 

available for the given signal and the filter’s length 

stated at the specified sampling frequency. A main 

reason of this is a lack of knowledge how the 

frequency response of a DT filter should deviate from 

the ideal frequency response to produce a convolved 

waveforms as accurately as possible. In other words, 

there are limited possibilities to formulate an optimal 

design specification in the frequency domain and so 

to design an optimal filter for computing a 

convolution transform.  

In specific areas, such as geophysical prospecting 

[18-20] and material science [3], it is widespread to 

design filters for convolution transforms from a pair 

of known input-output functions related with each 

other by the given transform. This approach has been 

generalized as an identification (ID) method 

implementing design of filters in the input-output 

signal domain [23], although it can be also 

interpreted as a method based on the learning 

principle [3,24].  

An advantage of ID method is that it effectively 

eliminates various effects, such as data truncation, 

rounding-off, etc., from which cannot be avoided by 

the frequency-domain methods. The identification 

method has been also used for constructing DT 

algorithms for non-linear – non-convolution 

transforms, such as computing the real and imaginary 

parts [25,26] and the relaxation spectrum [27,28] 

from the magnitude response, where a non-

convolution transform is approximated by a 

convolution transform and computed by a DT filter. 

A main drawback of the ID method often pointed out 

in the literature [18-20] is dependence of the filter 

coefficients on the pair of input and output functions 

chosen for the identification. 

 

 

5 Filter Design Based on BLPs of 

 Input and Output Signals 

 

 

5.1 Idea behind Filter Design 

In Fig. 5, typical variations of MSEs with sampling 

frequency are shown for DT filters designed by 

different methods, such as already mentioned IRT 

method [15] and ID method [3,23], as well as the 

Parks-McClellan (PM) algorithm [13,14,29]. MSEs 

are computed according to (16) for the time-domain 

errors corresponding to the time-domain criterion. To 

simplify the formula, the indices without “TD” is 

used for “MSE”.  

It can be seen, that the non-bandlimitedness error 

(coloured lane), which is limited by the maximum 

anti-aliasing error (15) and maximum aliasing error 

(14), practically does not depend on algorithm, at the 

same time BLP errors are highly algorithm 

dependent. So, the total computation error of a 

smooth NBL signal can be practically decreased only 

by two means: (i) by increasing sampling frequency, 

and (ii) by improving the computing accuracy for 

BLP. Thus, a key idea behind the proposed filter 

design is finding maximum accurate algorithms for 

computing BLP. To materialize the idea, we propose 

to design filters in the input-output signal domain by 

the identification method [3,23] with using pairs of 
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the bandlimited portions of NBL input and output 

functions. 

 

 

Fig. 5. Variation of differentiation MSEs with 

sampling frequency for the Cauchy pulse and its 

characteristic time-domain portions: (a) maximum 

aliasing and anti-aliasing MSEs, coloured lane – 

interval of variation of the non-bandlimitedness 

error; (b) MSEs of BLPs and total MSEs. 

 

 

5.2 Design Example of Differentiator 
In this Sub-section, we demonstrate designing a DT 

differentiator by using BLP (4) of the Cauchy pulse 

(3) and BLP 

2

2

( )

( )[ 2 2 exp( )cos( )

2 exp( )sin( )]

( ){exp( )[ cos( )

sin( ) sin( )]}

BLP

Ny Ny

Ny Ny

Ny Ny Ny

Ny Ny Ny

c t

c t t t t t

t t t

c t t t t

t t

 

    

  

   

  

  (17) 

of derivative of the Cauchy pulse 

2( ) 2 ( )c t tc t   .  

The filter coefficients are found for bandlimited 

input (4) by minimizing time domain error between 

the differentiator’s output ˆ( )y t  and the exact 

bandlimited derivative (17) 

ˆ( ) ( ) ( )BLPe t y t c t   

according to MSE criterion (16). 

 

 

5.3 Accuracy Evaluation of Designed 

 Differentiator 
In Fig. 6, differentiation MSEs of the Cauchy pulse 

with sampling frequency are shown for 12-point 

differentiators designed by different methods. 

 

Fig. 6. Variation of differentiation MSEs with 

sampling frequency for derivatives of the Cauchy 

pulse: (a) MSEs of BLPs and OBPs, (b) full 

differentiation MSEs. 

It can be seen that the four differentiators have 

practically equal non-bandlimitedness error (as a 

limit error in the form of maximum aliasing error 

MSEmaxA) that exponentially decays with sampling 

frequency. At the same time, the different 

differentiators exceedingly unlike process BLP 

producing the error that slightly increases with 

sampling frequency for IRT differentiator, is 

practically constant for PM differentiator and decays 

with sampling frequency for ID and IDBL 

differentiators. How it was expected, IDBL 

differentiator has the smallest MSEBLP.   

The non-bandlimitedness (maximum aliasing) 

error is greater than BLP errors at low frequencies 

resulting in its prevailing contribution in the total 

errors MSEfull for all the differentiators (Fig. 6(b)). 

Due to the exponentially decaying MSEmaxA and the 

slower decaying MSEBLP, BLP errors overcome the 
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non-bandlimitedness error at higher sampling 

frequencies, which are various for different 

differentiators. Fig. 6 actually witnesses the rightness 

of the idea behind the proposed design method that 

the total processing error for smooth NBL signals can 

be decreased by two means – increasing sampling 

frequency and improving the processing accuracy of 

BLPs. 

Qualitatively similar behaviour of total MSEs 

with sampling frequency to that of the Cauchy pulse 

(see Fig. 6(b)) has been observed for some other 

smooth NBL test signals, such as the Hilbert 

transform of the Cauchy pulse (Fig. 7) 

2( ) / (1 )x t t t   

having derivative 

2 2 2( ) (1 ) / (1 )y t t t   , 

the Gaussian function (Fig. 8) 

2( ) exp( )x t t  , 

having derivative 

2( ) 2 exp( )y t t t    , 

and for a bandlimited signal – the unnormalized sinc-

function (Fig. 9) 

( ) sinc( ) sin( ) /x t t t t   

having derivative 

2( ) cos( ) / sin( ) /y t t t t t  . 

 

Fig. 7. Variation of total differentiation MSEs with 

sampling frequency for the Hilbert transform of the 

Cauchy pulse (small window). 

Variation of the differentiation error with 

sampling frequency for the Hilbert transform of the 

Cauchy pulse (see Fig. 7) and the Gaussian function 

(see Fig. 8) shows that the total error is formed from 

both of components (1) similarly as for the Cauchy 

pulse (see Fig. 6) with prevailing of MSEmaxA at low 

sampling frequencies and MSEBLP at the higher ones. 

 

Fig. 8. Variation of total differentiation MSEs with 

sampling frequency for the Gaussian function (small 

window). 

 

Fig. 9. Variation of total differentiation MSEs with 

sampling frequency for sinc-function (small 

window). 

For sinc-function (see Fig. 9) as a bandlimited one, 

we cannot speak about the non-bandlimitedness error, 

however, here, also OBP appears, when the Nyquist 

frequency is smaller than the limit frequency of the 

frequency band with non-zero spectrum. This OBP 

creates the aliasing error, which as a very fast decaying 

error is seen in Fig. 9 at low frequencies. 

 

 

5.4 Magnitude Responses 
In Fig. 10, the errors of magnitude responses 

( )H j   are compared for the four 12-point 

differentiators. It can be seen that the deviations of 

magnitude responses from the ideal magnitude 

response do not reflect the common differentiation 

accuracy (see Fig. 6 – Fig. 9). This observation 

confirms the statement made in the Section 4 that a 

lack of knowledge about optimal design specification 
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in the frequency domain limits the frequency-domain 

design methods to construct accurate DT algorithms 

for computing convolution transforms. 

 

 

Fig. 10. Errors of magnitude responses for 12-point 

differentiators: (a) IDBL, ID, PM and IRT 

differentiators, (b) IDBL and ID differentiators. 

Designing FIR filters for computing integral 

transforms in the specific fields [3,18-20] has shown 

that smooth magnitude responses are required in the 

vicinity of zero frequency to compute accurate 

convolved waveforms. The errors of magnitude 

responses of ID and IDBL differentiators (Fig. 10 (b)) 

approve this experience and demonstrate that the 

more accurate IDBL differentiator (see Fig. 6 – Fig. 9) 

has the smoother magnitude response than that of the 

ID differentiator. 

 

 

7 Conclusion 
The paper is addressed to increasing the accuracy of 

discrete-time computation of linear rheological and 

viscoelastic material functions with taking into 

account their belonging to a class of smooth non-

bandlimited (NBL) signals. We demonstrate that the 

ideology of classical discrete-time processing, based 

on preserving accurate spectrum over the Nyquist 

frequency band, does not provide the adequate 

accuracy evaluation for computed material functions, 

because ignores the anti-aliasing distortion caused by 

removal of out-of-band portion (OBP) of a NBL 

material function needed for preserving accurate 

spectrum over the Nyquist frequency band. To ensure 

the adequate accuracy evaluation for computed   

material functions, we propose to waive the criterion 

of preserving accurate spectrum over the Nyquist 

frequency band, but instead to use for NBL material 

functions the criterion of maintaining accurate shape 

of a material function in the time-domain. 

Justification of the time-domain criterion is provided. 

Error models are developed for both the accuracy 

criteria. Increase of the accuracy of filtering 

algorithms is studied for computing NBL material 

functions. It is demonstrated that the accuracy of 

filtering algorithms can be increased by increasing 

the computing accuracy for bandlimited portions of 

NBL material functions. Based on this, design of 

discrete-time filter is proposed by the identification 

method with employing a pair of bandlimited input 

and output portions of NBL signal. The proposed 

design approach is validated by constructing a 

discrete-time differentiator with using bandlimited 

portions of the Cauchy pulse and its derivative. The 

performance of the designed differentiator is 

evaluated by estimating the mean-square errors for 

computed derivatives at different sampling 

frequencies for several smooth NBL test signals, such 

as the Cauchy pulse, the Hilbert transform of Cauchy 

pulse, the Gaussian function, as well as for a 

bandlimited test signal – sinc-function.  
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